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Abstract
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in
isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are
included, and the interaction of longitudinal displacements with the field of concentration of
non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach
is used to show that the equations are reducible to the Kadomtsev–Petviashvili–Burgers
nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that
two-dimensional shock waves can propagate in plates.

1. Introduction

The investigation of solitary strain wave propagation in
solids under intense external exposures (in particular, under
laser or electron-beam radiation or under high-speed loading)
represents one of the rapidly progressing lines of research
in nonlinear wave dynamics [1–9]. The presence of such
waves is usually attributed to the balance between dispersion
(or dissipation) and nonlinearity. Dispersion in the elastic
medium may be caused by its microstructure [1], as well
as by the finiteness of the crystal lattice period [10] or the
thickness of the sample [3]. Nonlinearity is provided by
both the nonlinear dependence of strain on the displacement
gradient [8] (geometrical nonlinearity) and by the elastic
features of a material (physical nonlinearity).

The study of the behavior of nonlinear strain waves is
of importance for the development of both the general theory
of nonlinear wave processes and the modern methods of
non-destructive testing [3] and determination of the physical
properties of materials, including the detection of regions of
defect concentration and quality testing of coatings.

The formation of non-equilibrium atomic point defects
of the crystal structure (vacancies, interstitials) may occur
as a result of the action of intense external energy fluxes
(laser and corpuscular radiations) on solids or as a result of
mechanical, thermal, and electric treatment of materials. A
high concentration of localized defects is a source of internal
mechanical stresses [11]. These stresses are caused by the
distortion of the crystal lattice near the defects arising as a

result of the breaking of atomic bonds. The defects generated
in a plate may diffuse and recombine either at various internal
inhomogeneities in the bulk of the plate (or emerge at the
surface) or with each other (a mutual recombination).

The presence of a high concentration of non-equilibrium
atomic lattice defects in the medium and its relation to the
elastic strain may affect the propagation of nonlinear elastic
disturbances in a condensed medium and produce qualitatively
new physical effects. For example, physical nonlinearities
caused by atomic defects may lead to the appearance of
relaxation components in the elastic parameters of the medium
(in both linear and nonlinear elastic moduli). The presence
of lattice defects with a finite relaxation rate may give rise
to dissipative terms, which are absent in the conventional
equations of elasticity theory.

The nonlinear dynamics of longitudinal strain waves in
solids without taking into account the interaction with lattice
defects was theoretically investigated in [7–9]. In our previous
works [12–16], the evolution of solitary strain waves in a
condensed medium was considered with allowance for the
interaction with laser-induced non-equilibrium atomic lattice
defects. In these studies, attention was mostly focused
on studying the influence of the strain-induced diffusion,
generation, and recombination of defects on the propagation
of one-dimensional (1D) elastic strain disturbances and their
dispersion and dissipation properties.

Our aim in this paper is to study the two-dimensional
(2D) finite-amplitude longitudinal vibrations in an isotropic
elastic plate making allowance for the interaction between the
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strain and non-equilibrium atomic defect concentration fields.
A nonlinear evolution equation describing the 2D longitudinal
strain waves is derived using an asymptotic approach. It has the
form of a Kadomtsev–Petviashvili–Burgers (KPB) equation.

2. Statement of the problem

Let us consider an isotropic nonlinear elastic plate with free
lateral surfaces that occupies the region −∞ < x, y < ∞,
−h < z < h, in Cartesian coordinates (x, y, z). Once
laser light is absorbed in the plate, local heating will result
in the generation of atomic lattice defects. Let n( j)(x, y, z, t)
be the concentration of non-equilibrium atomic point defects
(PDs; vacancies and interstitials) of the j th-type ( j = V for
vacancies (V -defects) and j = I for interstitials (I -defects)).
Let q and r be the source function and recombination rate
of atomic defects, respectively. Let us enter the Cartesian
coordinates x⇀(x, y, z), so the centroidal plane of a plate is
described by the equation z = 0 and the lateral surfaces by
the equations z = ±h. Assume the displacement vector in the
plate is �u = (u1, u2, u3). The strain field in the nonlinearity
plate is defined by Green finite deformation tensor uik (i, k =
1, 2, 3):

uik = 1

2

(
∂ui

∂xk
+ ∂uk

∂xik
+ ∂ui

∂xi

∂ui

∂xk

)
.

This describes the geometrical nonlinearity, as discussed
by Engelbrecht [8]. The interaction of strain and concentration
fields occurs through a direct mechanism due to the modulation
of the rate of generation (recombination) of defects owing to
the deformation potential.

The governing equations of motion are obtained using
Hamilton’s principle. Indeed, for an adiabatic deformation,
the Lagrangian density per unit volume, L, is defined as the
difference between the kinetic energy density, W , and U is the
density of the potential energy of the elastic continuum with
atomic defects [5, 6]. We have

L = W − U = ρ

2

[(
∂u1

∂ t

)2

+
(

∂u2

∂ t

)2

+
(

∂u3

∂ t

)2
]

− U(uik),

where ρ is the density of the plate material at time t = t0. Let
us represent U in the form

U = Uelas + Ud,

Uelas = 1
2λu2

ll + μuikuki + 1
6ν1u3

ll + ν2unnuikuki

+ 4
3ν3uikuknuni ,

Ud = −ϑ(mj)null ,

(1)

where Uelas is the energy density of the elastic continuum
with allowance for anharmonicity (λ and μ are the second-
order elastic moduli, or the Lamé coefficients, ν1, ν2, and ν3

are the third-order elastic moduli); Ud is the energy density
corresponding to the interaction of atomic defects with the
elastic continuum; ϑ(mj) = K�(mj) is the defect deformation
potential. The dilatation parameter �(mj) characterizes the
lattice deformation due to the appearance of a single j -type

point defect in the lattice. For v-defects, �(mV ) =−δ(V )d3
0 < 0

(here, the coefficient is δ(V ) = 0.2–0.4 and d0 is the lattice
period), whereas, for i -defects, �(mI ) = δ(I )d3

0 > 0 (the
coefficient is δ(I ) = 1.7–2.2). In the above formula, K = λ +
2/3μ is the bulk modulus. Defects V and I are represented as a
substitutional atom whose volume is smaller or greater than the
volume of the matrix atoms, respectively. In what follows, we
restrict ourselves to a system with a single type of defect and
set n( j)(x, y, z, t) ≡ n(x, y, z, t), τ ( j)

d ≡ τd, ϑ
(mj ) = ϑ(m), etc

in equation (1).
We set to zero the variation of the action functional �:

δ� = δ

∫ t2

t1

dt

[∫ h

−h
dz

∫ ∞

−∞

∫ ∞

−∞
L dx dy

]
= 0. (2)

The integration in brackets in equation (2) is carried out at
the initial time t = t0.

The displacement vector components (u1, u2, u3) in
thickness-symmetrical vibrations of the plate and at low
frequencies (ωhc−1

t < 2, ω is the angular frequency, and ct =√
μρ−1 is the shear linear wave velocity) may be approximated

as follows [17]:

u1(x, y, z, t) = u(x, y, t), u2(x, y, z, t) = v(x, y, t),

u3(x, y, z, t) = zw(x, y, t),
(3)

where the displacements u(x, y, t) and v(x, y, t) are in the
centroidal plane along the x and y axes, respectively, and
w(x, y, t) is the function describing the displacements along
the z axis.

In this case the system of three-dimensional (3D)
equations of elasticity theory is replaced by a simpler
hyperbolic–parabolic system depending on two variables.

For the stress tensor (σik ) we have

σik = λullδik + 2μuik + O(u2
ik) − ϑ(m)nδik, (4)

where σik and uik are the components of stress and
strain tensors, respectively; the function O(u2

ik) includes
the nonlinear terms describing anharmonicity of elastic
displacements. The last term in (4) takes into account
the elastic stresses due to the concentration expansion of
the medium. The tensor σik takes into account both the
geometrical and physical (material) nonlinearities.

In the context of the thermal-fluctuation model of PD
production, the rate of defect generation from the lattice sites
due to laser irradiation is governed by temperature T (or the
power density of laser radiation IL) and stresses. Therefore,
this rate may vary under the effect of propagating elastic wave,
i.e. thermofluctuation-related defects may be generated and
annihilate. Strain wave propagation affects the characteristics
of the defects. Thus, when the longitudinal strain wave
propagates, the formation energy (wf) of PDs changes in the
compression and dilatation zones. The renormalized formation
energy of PDs can be represented as w̃f = wf0 − ϑ(d)ull (wf0

is the formation energy for the defect in an unstrained crystal,
ϑ(d) is the deformation potential characterizing the variation of
the activation energy of formation of defects under the lattice
deformation). If there is a deformation-related perturbation

2
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of the lattice, not only does the formation energy of defects
decrease, but so does the activation energy for the defect
migration (wm): w̃m = wm0 − ϑ(m)ull (wm0 is the migration
energy of defects in the absence of strain field); this results in
an increase in the diffusion coefficient.

The concentration of PDs is dependent on temperature.
One thus needs to know how the laser irradiation affects
the local temperature of the plate. We will consider here
situations where the laser only heats the material (the light
energy absorbed by the medium is transformed into heat), and
that an equilibrium between laser radiation and the temperature
field (T ) is reached on timescales much shorter than the
characteristic timescale of evolution of the defect density.
Typically, the timescale for equilibration between photon
absorption and defect generation is of the order of picoseconds,
while that for PD diffusion is of the order of microseconds.
We also assume that the contribution of thermal strain to
deformation fields is negligible compared to lattice dilatation
due to PDs, and that phase changes and chemical reactions in
the medium are absent.

In this paper we will analyze the problem of strain wave
propagation in thin plates irradiated over a large area by CW
or pulsed lasers. Then let us consider the situation of uniform
irradiation of the plate surface. We will, furthermore, assume
that the temperature profile has reached its equilibrium value.
Its evolution is sufficiently slow compared to PD generation,
and it can be considered as quasistationary. The solution of the
heat conduction equation for this case is given by Duley [18].

Modulation of the formation and migration energies brings
about the corresponding modulations of the source function (q)
and defect recombination rate (r )

q = q0 + q1ull , r = r0 + r1ull ,

where q0 and r0 are the values of the source function and
recombination rate in an unstrained lattice (ull = 0), and
q1 = ∂q/∂ull , r1 = ∂r/∂ull are the values of their derivatives
at ull = 0.

Using the above-mentioned assumptions we can write the
following kinetic equation if the inhomogeneous perturbations
in the defect density n1 = n − n0 are slight (n1 � n0, where
n0 = q0τd is the steady-state uniform distribution of defects):

∂n1

∂ t
= (q1 − r1n0)ull − r0n1. (5)

The first term in the round brackets on the right-hand side
of equation (5) accounts for the contributions to the generation
of PDs that refer to the deformation potential. The second
term accounts for the stress-induced recombination of defects
(r1 = r0ϑ

(m)/kBT ), and the third term accounts for the loss
of atomic defects due to recombination in a stress-free plate
(r0 = 1/τd0 = Dd0k2

d is the recombination rate at the sinks and
the surface, k2

d = ∑
s Zsρs + 4/h2, where ρs is the density of

sinks, Dd0 = D0 exp(−wm0/kBT ) is the diffusion coefficient
of defects, D0 the constant, kB is the Boltzmann constant, and
τd0 the relaxation time).

The mutual recombination of different types of PDs in the
bulk is neglected. For the generation rate of PDs due to laser

irradiation, we have the Arrhenius-type relation [11]:

q1 = q0
ϑ(d)

kBT
, q0 = d3

0ω0 N2
0 exp

(
− wf0

kBT

)
.

Here, ω0 is the atomic vibrational frequency (ω0 ∼ 1014 s−1)
and N0 is the density of lattice sites.

Solving equation (5) with allowance for boundary
conditions n1(±∞, t) = 0, we get

n1 = (q1 − r1n0)

∫ t

−∞
dζull(ζ ) exp[(ζ − t)/τd]. (6)

Substitution of (6) into (4) results in the following
equation for the condition of the elastic medium:

σik = λullδik + 2μuik + O(u2
ik)

− δik g0

∫ t

−∞
dζull(ζ ) exp[(ζ − τ )/τd], (7)

where g0 = q0ϑ
(m)(ϑ(d) − ϑ(m))/kBT .

3. Governing nonlinear equations for longitudinal
strain waves

Now we can derive the governing equations of motion for an
elastic plate. Substituting (1), (3), and (7) into (2) and using
Hamilton’s variational principle, after a simple calculation we
obtain equations for the displacements u and w:

ρ
∂2u

∂ t2
= (λ + 2μ)uxx + (λ + μ)vxy + (3λ + 6μ + β)uxuxx

+ μuyy + λk0wx + (λ + μ)[vxvxx + 2
3 h2wxwxx + (u2

y)x]
+ λ[2vyvxy + 2

3 h2wywxy + (vyux)x + 2
3 h2wxwxx

+ wwx + k0(uxw)x + k0uyyw] + μ

[
∂

∂y
(vxvy

+ 1
3 h2wxwy + uxvx) + (uyvx)x + 2ux uyy

]

+ (ν1 + 2ν2)
∂

∂x

[
ux(vy + k0w) + 1

2
(v2

y + k0w
2)

]

+
(

1

2
ν2 + ν3

){
∂

∂x

(
u2

y + v2
x + 1

2
h2(w2

x + w2
y)

)

+ 2
∂

∂y

[
uy(ux + vy + k0w)

]} + 2(ν2 + ν3)

{
(uyvx)x

+ ∂

∂y

[
vx(ux + vy + k0w)

]} + ν1k0
∂

∂x
(vyw) − 2ν3k0

× ∂

∂y
(vxw) + (uxx + uyy)I1 + (1 + ux)

∂

∂x
(I1)

+ uy
∂

∂y
(I1); (8)

ρh2

3

∂2w

∂ t2
= −λk0(ux + vy) − (λ + 2μ)k0w

× (k0 + 3
2w) + 1

3μh2(wxx + wyy) + 1
3 h2(λ + 2μ)

×
[

∂

∂x
(wx ux) + ∂

∂y
(wxuy)

]
+ 1

3
λh2

[
∂

∂x
(wxvy)

+ ∂

∂y
(wyux)

]
+ 1

3
μh2

[
∂

∂x
(wyuy + wyvx)

3



J. Phys.: Condens. Matter 20 (2008) 275202 F K Mirzade

+ ∂

∂y
(wx uy + wxvx) + 2

∂

∂x
(wwx) − 2

∂

∂y
(wwy)

− w2
x − w2

y

]
− 1

2λ[k0(u
2
x + u2

y + v2
x + v2

y

+ 1
3 h2(w2

x + w2
y)) + 2w(ux + vy)] + 1

2βk2
0w

2

− (ν1 + 2ν2)
[
k2

0w(ux + vy) + 1
2 k0(u

2
x + v2

y)
]

+ 1

3
h2

(
1
2ν2 + ν3

) {
2

∂

∂x

[
wx(ux + vy + k0w)

]

+ 2
∂

∂y

[
wx(ux + vy + k0w)

]}

− 3
k0

h2
(u2

y + v2
x ) − k0(w

2
x + w2

y)

− 2ν2k0uyvx − ν1uxvy − (k0 + w)I1

+ ∂

∂x
(wx I2) + ∂

∂y
(wy I2) (9)

where the following designations are used

I1(x, y) = −b0(2h)−1
∫ h

−h
dz

∫ t

−∞
e−r0(t−τ)ull(τ ) dτ ,

I2(x, y) = −b0(2h)−1
∫ h

−h
z2 dz

∫ t

−∞
e−r0(t−τ)ull(τ ) dτ

(10)

(the subscripts x and y in equations (8) and (9) indicate
derivations with respect to the corresponding variables; β =
ν1 + 6ν2 + 8ν3; k2

0 = π2/12 is a correction factor [4]).
The equation for v can be obtained from equation (9)

by replacing u with v, v with u, and x with y, y with
x . Equations (8) and (9) represent the integro-differential
equations in which the occurrence of integrated terms is
caused by defect–strain interaction. These equations without
the integral terms represent the well-known equations of the
theory of longitudinal nonlinear vibration of thin elastic plates,
considered in [3].

Equations (8) and (9) form a closed system. The
latter completely describes the dynamics of 2D strain-
related perturbations in a plate with defect generation; these
perturbations are caused by nonstationary and nonuniform
distributions of the PD subsystem. The inverse effect,
i.e. variation in the concentration field of atomic defects in
a plate as a result of perturbations of elastic strains, is also
accounted for.

4. Kadomtsev–Petviashvili–Burgers evolutionary
equation for longitudinal strain waves

We consider the dynamics of a long longitudinal strain wave of
small but finite amplitude (the wavelength of the propagating
wave (�) considerably exceeds the amplitude of the vibrations
� � a). Entering the small parameter describing nonlinearity
of the wave process:

ε = a(β + 3λ + 6μ)

�(λ + 2μ)
� 1,

where a is the amplitude of the vibrations and � is the
wavelength.

To simplify the study we replace integrated operators
in (10) by differential ones. Expanding the function ull(τ ) into
a Taylor series on power t − τ and retaining the first two terms
in this expansion (r0t � 1), we obtain

I1(x, y) = g0

2hr0

[
−

∫ h

−h
ull dz + 1

r0

∂

∂ t

(∫ h

−h
ull dz

)]
,

I2(x, y) = g0

2hr0

[
−

∫ h

−h
ull z

2 dz + 1

r0

∂

∂ t

(∫ h

−h
ull z

2 dz

)]
.

Let us take into account these approximation expressions in
equations (8) and (9) and analyze the received equations by a
asymptotic method.

For further analysis we introduce dimensionless variables

u∗ = u

a
, v∗ = v

a
, w∗ = w

h
,

ξ = x

�
− c

�
t, η = √

ε
y

�
, χ = ε

x

�
.

(11)

The choice of the variables in (11) reflects the different scales
of variation of the wave parameters along the x and y axes.
Physically it means that because of nonlinearity and dispersion,
a disturbance propagating with velocity c along the x axis
slowly evolves in the longitudinal (x) and transverse (y)
directions.

We seek a solution of the problem in the form of
asymptotic expansions in the small parameter (ε) (the asterisks
on the appropriate dimensionless variables are omitted for
simplicity):

u = u0 + εu1 + O(ε2),

v = √
ε(v1 + εv2 + O(ε2)),

w = w0 + εw1 + O(ε2).

(12)

Equations (8) and (9), except for ε, contain also two small
parameters

ε1 = h2(λ + μ)/3�2(λ + 2μ) = O(ε),

ε2 = g0c/r 2
0 � = O(ε),

where the parameter ε1 characterizes the dispersion induced
by motions normal to the centroidal plane of the plate, and
the parameter ε2 takes into account the interaction of the
strain field with the subsystem of defects due to deformational
potential.

Substitution of expressions (12) in the set (8) and (9) leads
to an infinite system of equations. In the leading order in ε, we
have:

ρc2u0ξξ = (λ̃ + 2μ)u0ξξ + λ̃k0w0ξ , (13)

λ̃u0ξ + (λ̃ + 2μ)k0w0 = 0. (14)

From equation (14) we find the relationship between the
longitudinal and normal components of the strain:

w0 = − λ̃

k0(λ̃ + 2μ)
u0ξ , λ̃ = λ(1 − g0/λr0). (15)

4
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After substitution of equation (15) into equation (13)
we obtain the following expression for the longitudinal wave
velocity in the plate

c =
√√√√

(
λ̃ + 2μ − λ̃2

λ̃ + 2μ

)
ρ−1. (16)

If g0 is equal to zero, which means that defect generation
is absent, the formula (16) follows a well-known expression
for the velocity of longitudinal waves in a plate: c =
[E/ρ(1 − σ 2)]1/2 (E and σ are Young’s modulus and
Poisson’s ratio, respectively).

Setting terms with powers ε and ε1/2 equal to zero, we
obtain the following system of equations:

−λ̃k0w1ξ − λ̃2

λ̃ + 2μ
u1ξξ = 2(λ̃ + 2μ)u0ξχ + (λ̃ + μ)v1ξη

+ μu0ηη + λ̃k0w0χ + (3λ̃ + 6μ + β)ε−1u0ξ u0ξξ

+ 2μg0c

3r 2
0 K�ε

(2u0ξξξ − k0w0ξξ ), (17)

ρc2v1ξξ = (λ̃ + μ)u0ξη + μv1ξξ + λ̃k0w0η = 0, (18)

ρ
c2h2

3ε �2
w0ξξ = −λ̃k0(u0χ + v1η) + μh2

3ε�2
w0ξξ

− 1
2 (λ̃ + 2μ + k2

0β)ε−1k0w
2
0 − (ν1 + 2ν2)ε

−1

× (k2
0u0ξw0 + 1/2k0u2

0ξ ) − 1
2ε−1λ̃(k0u2

0ξ + 2w0u0ξ )

− λ̃k0(u1ξ + k0w1) − 2μk2
0w1 + 2μg0c

3εr 2
0 K�

× (k0u0ξξ − 2k2
0w0ξ ). (19)

From equation (18) after integration with respect to ξ , and
using equation (15), we have the relationship between the shear
strains in the wave: v1ξ = u0η. We substitute this expression,
and also equation (15), into equation (19), which differentiate
with respect to ξ . As a result we have:

λk0u1ξξ + k2
0(λ̃ + 2μ)w1ξ = λ̃h2(ρc2 − μ)

3εk0(λ̃ + 2μ)
u0ξξξξ

− λ̃k0u0ξχ − λ̃k0u0ηη − [λ̃k2
0β + λ̃(λ̃ + 2μ)

− (λ̃ + k0ν1 + 2k0ν2)(λ̃ − 2μ)](λ̃ + 2μ)−1ε−1u0ξ u0ξξ

+ 2μg0ck0

3r 2
0 K�ε

(
1 + 2λ̃

λ̃ + 2μ

)
u0ξξξ . (20)

Equating the left-hand side of equation (17) to the left-
hand side of equation (20), multiplied by −λ̃/k0(λ̃ + 2μ),
and introducing the designation e = u0ξ , we arrive at the
equation (called the KPB equation) for the self-consistent
strain deformation

∂

∂ξ
(eχ + a1eeξ + a2eξξξ + a3eξξ ) = −a4eηη, (21)

with coefficients

a1 = (ερb)−1{3(λ̃ + 2μ) + β−λ̃[λ̃k2
0β + λ̃(λ̃ + 2μ)

− (λ̃ + ν1k0 + 2k0ν2)(λ̃ − 2μ)](λ̃ + 2μ)−2k−1
0 },

a2 = h2λ̃2(c2 − c2
t )

3�2 k2
0ε b(λ̃ + 2μ)2

,

a3 = 4g0cλ̃μ(3λ̃2 + 6λ̃μ + 4μ2)

3r 2
0�K ερ b(λ̃ + 2μ)2

,

a4 = c2/b, b = c2
l + c2, c2

l = (λ̃ + 2μ)ρ−1.

As can be seen from equation (21), all coefficients (ai , i =
1, 2, 3, 4) depend on the elastic moduli λ,μ and on the
properties of the defect subsystem in the medium. It is clear
that a1 is caused by the geometrical and physical nonlinearities
of the elastic medium, a2 and a3 characterize the dispersion and
dissipation, caused, respectively, by the thickness of the plate
and the interaction of the elastic strain field of the plate with
the atomic defect subsystem.

Equation (21) differs from those obtained in [3] without
use of the strain–defect interaction. The presence of the
dissipative term a2eξξ in (21) may significantly change the
strain wave behavior in the plate.

If we neglect thickness vibrations of the plate, from
equation (21) we get the equations for the propagation of
nonlinear waves in an unbounded nonlinear elastic medium
with defect generation

eχξ +
(

3

4ε
+ β

4ρ c2
l ε

)
(e2)ξξ + a3eξξ = −1

2
eηη.

Equation (21) admits [2], in particular, a traveling 2D
exact solution in the form of shock-wave strain structures.
Such structures are possible if the coefficients a1, a2 have the
same sign, and the coefficients a1, a3 have different signs that
is possible by the appropriate choice of physical parameters of
the medium and the defect subsystem (q0, r0, ϑm,d). The same
structure will arise if the coefficients a1, a2 have different signs,
and the coefficients a2, a3 have the same sign.

Let g0 < 0. Let us also write down the inequalities
a1 > 0, a2 > 0, a3 < 0. Then the solution of (21) can be
written as

e(θ) = 18a2
3

25a1a2
− 12a2

3

25a1a2
tanh2(θ/2) − 6a2

3

25a1a2
tanh(θ/2),

(22)
where,

θ = |k1|ξ + |k2|η − |ω|χ, ω = 6a3
3

125a2
2

+ 5a2a4

a3
k2

2,

k1 = a3

5a2
,

k2 is a any parameter.
From equation (22) it follows

e(θ → −∞) → 12a2
3/25a1a2, e(θ → ∞) = 0.

Returning to a dimensional variable

θ = k1ξ + k2η − ωχ = x + (k2/k1)y
√

ε − ct − (ω/k1)εct,

we define that the defect-related contribution to the wave
velocity is (ω/k1)ε.

Thus, from our analysis it follows that under certain
conditions the solution of (21) will look like a shock wave with
a monotonic structure. It is clear that the excited shock wave
will be a tensile wave (e > 0).

5
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Figure 1. 2D strain waves in laser-irradiated Si plates.

As an example let us consider the formation of shock-
wave strain structures in laser-irradiated semiconductor (in
particular, Si) plates of thickness h = 10−3 cm. To estimate
the concentration of generated lattice defects (n0), we consider
here conditions when the duration of a laser pulse (τL) exceeds
the defect relaxation time (τd). In this case the density of
defects on the surface of the plate reaches a steady-state value

n0 = q0τd = q(0)τ
(0)

d exp(−wd0/kBT0),

where wd0 = wf0 − wm0, q0 = q(T0) is the defect generation
rate, T0 is the steady-state value of the temperature field on
the surface, and q (0) and τ

(0)
d are constants. If IL = const

(uniform irradiation) and in the high surface absorption limit,
αLh � 1 (αL is the linear absorption coefficient, αL =
104 cm−1), for the temperature field, according to [18], we
have: T0 = IL(1 − R)h/λT, where R is the reflectivity
coefficient of the plate and λT is the thermal conductivity. For
IL = 6 × 105 W cm−2, λT = 0.25 W cm−1 K−1, R = 0.4 an
estimate

of T0 yields: T0 = 1.5 × 103 K. Then, taking N−1
0 =

d3
0 = 2 × 10−22 cm3, wd0 = 1 eV, a value of 2 × 1019 cm−3

may be estimated for the defect concentration (n0), which
is several orders of magnitude less than the concentration of
the host atoms. For typical values of the elastic modulus
λ = 6.4 × 1010 Pa, μ = 7.9 × 1010 Pa, β = 1011 Pa [22],
and the deformation potentials ϑm = 10 eV and |ϑd| =
102 eV [11], estimates of the coefficients (a1, a2) and a3

involved in solution (21) yield: a1 = 1.5, a2 = 0.07 and
|a3| = 0.2. We can see from these values that above obtained
conditions required for the appearance of a shock-wave strain
structure are fulfilled. The shape of the nonlinear wave with the
above parameter values is shown in figure 1. Such structures
can also be observed in many metal (Al, Fe, Ni, Ti, Mo, etc)
plates.

5. Conclusions

A model has been presented for the description of finite-
amplitude 2D longitudinal elastic waves in an elastic isotropic
plate with non-equilibrium atomic defects. The model is
based on the nonlinear equations that uniquely describe the
combined dynamics of the fields of longitudinal displacements
and concentration of atomic defects. The non-equilibrium

concentrations of defects in the plate are caused by the
absorption of laser radiation. The interaction of strain and
concentration fields occurs through a direct mechanism due to
the modulation of activation energies for defect formation and
migration owing to the defect deformation potential.

In the long wave limit we derived the nonlinear evolution
equation for the 2D strain waves using an asymptotic
procedure. The derived nonlinear equation contains a
dissipative term caused by the strain–defect interaction. This
equation is, in fact, the combinations of the Kadomtsev–
Petviashvili equation [19] and the Burgers equation. Here
the role of the strain–defect interaction appears similar to the
influence of the viscoelasticity on the evolution of strain waves
in rods [20].

It is shown that the balance between nonlinearity,
dispersion, and defect-related dissipation results in formation
in plates of longitudinal solitary waves. The velocity of
these waves grows with increase in the wave amplitude, i.e. it
depends on a degree of nonlinearity in the wave process. The
obtained relationships between the wave characteristics and
the geometrical and physical parameters of materials allow us
to carry out more correctly experiments on solitary waves in
plates with defect generation under laser radiation.

An exact traveling solution describing the 2D solitary
strain wave structures (and also the defect concentration wave
structures) has been obtained. The analysis of the solution
allowed us to conclude that under certain conditions (by
the appropriate choice of physical parameters of the elastic
medium and the defect subsystem) the longitudinal strain wave
can have a shock-wave monotonic structure. The excited shock
wave is a tensile wave.

Note that the amplitude and velocity of the solitary
strain waves under consideration depend on the elastic moduli
and on the properties of the defect subsystem in the plate.
Consequently the theory developed here can be used for the
determination of the elastic moduli and the parameters of a
subsystem of atomic defects (for example, the recombination
rate, the migration and formation energies of PDs, and so on)
in solids on the basis of nonlinear distortions of the solitary
strain wave structures.

To conclude, the model of the evolution of strain waves in
solid plates irradiated by laser radiation is of general character
and can be applied to other forms of irradiation, such as that
with a flux of high-energy particles (electrons, neutrons, etc).
It can also be generalized to the problem of propagation of
nonlinear longitudinal waves in the plate, initially containing
small aggregates (complexes or nanoclusters) of atomic
defects. In this case strain-induced generation of atomic
defects will occur on a surface of clusters, and their generation
rate will depend on the concentration (or radius) of clusters;
hence, in order to adequately describe the kinetics of atomic
defects we have to supplement equation (5) with the relaxation-
type equation for a subsystem of clusters in the form

∂p

∂ t
= − p

τ 0
p

exp(ϑpe/kBT ),

where p is the volume fraction of clusters (0 � p � 1) or the
concentration of the complexes; τ 0

p = τp exp(Q0/kBT ) is the

6
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cluster lifetime without taking into account the strain influence,
Q0 is the self-diffusion activation energy for cluster relaxation
(bond energy in the case of complexes), τp is the decay rate
constant, ϑp = K�cl is the deformational potential (�cl is
an activation volume of a cluster). For a cluster consisting of
N atomic defects, the activation volume �cl is approximately
equal to the sum of the activation volume of single atomic
defects, and hence, for deformation potential (ϑp) we have:
ϑp ≈ K N�d. For example, for a cluster consisting of N =
102 centers, at typical values of the parameters (e0 ≈ 10−3,
�

(V )
d ≈ 10−23 cm3, K = 5 × 1010 Pa) we have for the

deformation-related contribution to the activation energy the
estimation Edef = K N�de0 ≈ 0.3 eV. Hence, the energy
of elastic concentration stresses is quite sufficient for the
detachment of atomic defects from clusters.

An appropriate source term in the kinetic equation for the
atomic defects can be represented as:

q(e) = −(V0/�)(∂p/∂ t)

(� ≈ d3
0 is the atomic volume, V0 is the initial value of the

cluster volume fraction). Such problem was considered in a
1D approximation in [21].
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